Double Layer Magnet Design Technique for Cogging Torque Reduction of Dual Rotor Single Stator Axial Flux Brushless DC Motor

Authors

  • A. N. Patel Electrical Engineering Department, Nirma University, Ahmedabad, India.
  • B. N. Suthar Electrical Engineering Department, Government Engineering College, Bhuj, India.
Abstract:

Cogging torque is the major limitation of axial flux permanent magnet motors. The reduction of cogging torque during the design process is highly desirable to enhance the overall performance of axial flux permanent magnet motors. This paper presents a double-layer magnet design technique for cogging torque reduction of axial flux permanent magnet motor. Initially, 250 W, 150 rpm axial flux brushless dc (BLDC) motor is designed for electric vehicle application. Initially designed reference axial flux BLDC motor is designed considering 48 stator slots and 16 rotor poles of NdFeb type single layer permanent magnet. Three-dimensional finite element modeling and analysis have been performed to obtain cogging torque profile of reference motor. Additional layer of the permanent magnet is created keeping usage of permanent magnet same with an objective of cogging torque reduction. Three-dimensional finite element modeling and analysis have been performed to obtain cogging torque profile of improved axial flux BLDC motor with double layer permanent magnet design. It is analyzed that double-layer magnet design is an effective technique to reduce the cogging torque of axial flux BLDC motor.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Cogging Torque Reduction of Sandwiched Stator Axial Flux Permanent Magnet Brushless DC Motor using Magnet Notching Technique

Cogging torque reduction of axial flux permanent magnet brushless dc (PMBLDC) motor is an important issue which demands attention of machine designers during design process. This paper presents magnet notching technique to reduce cogging torque of axial flux PMBLDC motor designed for electric vehicle application. Reference axial flux PMBLDC motor of 250 W, 150 rpm is designed with 48 stator slo...

full text

Optimization of Specific Power of Surface Mounted Axial Flux Permanent Magnet Brushless DC Motor for Electrical Vehicle Application

Optimization of specific power of axial flux permanent magnet brushless DC (PMBLDC) motor based on genetic algorithm optimization technique for an electric vehicle application is presented. Double rotor sandwiched stator topology of axial flux permanent magnet brushless DC motor is selected considering its best suitability in electric vehicle applications. Rating of electric motor is determined...

full text

Design Optimization of Axial Flux Surface Mounted Permanent Magnet Brushless DC Motor For Electrical Vehicle Based on Genetic Algorithm

This paper presents the design optimization of axial flux surface mounted Permanent Magnet Brushless DC motor based on genetic algorithm for an electrical vehicle application. The rating of the motor calculated form vehicle dynamics is 250 W, 150 rpm. The axial flux surface mounted Permanent Magnet Brushless DC (PMBLDC) motor was designed to fit in the rim of the wheel. There are several design...

full text

Cogging Torque Control in Brushless Dc Motors

During the past five years, cogging torque in HDD spindle motors has decreased drastically as designers and manufacturers have developed a better understanding of the cogging phenomenon. This paper examines various methodologies of cogging torque reduction. Timing techniques such as dead zones and tooth notching, smoothing techniques such as sinusoidal magnetization, and geometric techniques su...

full text

Reduction of Cogging Torque in Dual Rotor Permanent Magnet Generator for Direct Coupled Wind Energy Systems

In wind energy systems employing permanent magnet generator, there is an imperative need to reduce the cogging torque for smooth and reliable cut in operation. In a permanent magnet generator, cogging torque is produced due to interaction of the rotor magnets with slots and teeth of the stator. This paper is a result of an ongoing research work that deals with various methods to reduce cogging ...

full text

Design and optimization of dc brushless permanent magnet motor

Electric motors that have found wide application in various sectors of industry Have unique features such as high reliability, high efficiency, quick acceleration and have small sizes. Brushless DC motors meet these requirements well. In this study, the design of a brushless DC motor speed limits for the particular application at 1800 rpm that can be equivalent to 140 watts output was provided....

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 16  issue 1

pages  58- 65

publication date 2020-03

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023